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Abstract

Extracting generalized and robust representa-
tions is a major challenge in emotion recogni-
tion in conversations (ERC). To address this,
we propose a supervised adversarial contrastive
learning (SACL) framework for learning class-
spread structured representations in a super-
vised manner. SACL applies contrast-aware
adversarial training to generate worst-case sam-
ples and uses joint class-spread contrastive
learning to extract structured representations.
It can effectively utilize label-level feature con-
sistency and retain fine-grained intra-class fea-
tures. To avoid the negative impact of adversar-
ial perturbations on context-dependent data, we
design a contextual adversarial training (CAT)
strategy to learn more diverse features from
context and enhance the model’s context robust-
ness. Under the framework with CAT, we de-
velop a sequence-based SACL-LSTM to learn
label-consistent and context-robust features for
ERC. Experiments on three datasets show that
SACL-LSTM achieves state-of-the-art perfor-
mance on ERC. Extended experiments prove
the effectiveness of SACL and CAT.

1 Introduction

Emotion recognition in conversations (ERC) aims
to detect emotions expressed by speakers during
a conversation. The task is a crucial topic for de-
veloping empathetic machines (Ma et al., 2020).
Existing works mainly focus on context modeling
(Majumder et al., 2019; Ghosal et al., 2019; Hu
et al., 2021a) and emotion representation learning
(Zhu et al., 2021; Yang et al., 2022; Li et al., 2022a)
to recognize emotions. However, these methods
have limitations in discovering the intrinsic struc-
ture of data relevant to emotion labels, and struggle
to extract generalized and robust representations,
resulting in mediocre recognition performance.

In the field of representation learning, label-
based contrastive learning (Khosla et al., 2020;

*Corresponding author.

Martín et al., 2022) techniques are used to learn a
generalized representation by capturing similarities
between examples within a class and contrasting
them with examples from other classes. Since simi-
lar emotions often have similar context and overlap-
ping feature spaces, these techniques that directly
compress the feature space of each class are likely
to hurt the fine-grained features of each emotion,
thus limiting the ability of generalization.

To address these, we propose a supervised ad-
versarial contrastive learning (SACL) framework
to learn class-spread structured representations in a
supervised manner. SACL applies contrast-aware
adversarial training to generate worst-case samples
and uses a joint class-spread contrastive learning
objective on both original and adversarial samples.
It can effectively utilize label-level feature consis-
tency and retain fine-grained intra-class features.

Specifically, we adopt soft1 SCL (Gunel et al.,
2021) on original samples to obtain contrast-aware
adversarial perturbations. Then, we put perturba-
tions on the hidden layers to generate hard positive
examples with a min-max training recipe. These
generated samples can spread out the representa-
tion space for each class and confuse robust-less
networks. After that, we utilize a new soft SCL on
obtained adversarial samples to maximize the con-
sistency of class-spread representations with the
same label. Under the joint objective on both origi-
nal and adversarial samples, the network can effec-
tively learn label-consistent features and achieve
better generalization.

In context-dependent dialogue scenarios, di-
rectly generating adversarial samples interferes
with the correlation between utterances, which is
detrimental to context understanding. To avoid
this, we design a contextual adversarial training
(CAT) strategy to adaptively generate context-level

1The soft version means a cross-entropy term is added to
alleviate the class collapse issue (Graf et al., 2021), wherein
each point in the same class has the same representation.
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worst-case samples and extract more diverse fea-
tures from context. This strategy applies adver-
sarial perturbations to the context-aware network
structure in a multi-channel way, instead of directly
putting perturbations on context-free layers in a
single-channel way (Goodfellow et al., 2015; Miy-
ato et al., 2017). After introducing CAT, SACL can
further learn more diverse features and smooth rep-
resentation spaces from context-dependent inputs,
as well as enhance the model’s context robustness.

Under SACL framework, we design a sequence-
based method SACL-LSTM to recognize emotion
in the conversation. It consists of a dual long short-
term memory (Dual-LSTM) module and an emo-
tion classifier. Dual-LSTM is a modified version of
the contextual perception module (Hu et al., 2021a),
which can effectively capture contextual features
from a dialogue. With the guidance of SACL, the
model can learn label-consistent and context-robust
emotional features for the ERC task.

We conduct experiments on three public bench-
mark datasets. Results consistently demonstrate
that our SACL-LSTM significantly outperforms
other state-of-the-art methods on the ERC task,
showing the effectiveness and superiority of our
method. Moreover, extensive experiments prove
that our SACL framework can capture better struc-
tured and robust representations for classification.

The main contributions are as follows: 1) We
propose a supervised adversarial contrastive learn-
ing (SACL) framework to extract class-spread
structured representations for classification. It can
effectively utilize label-level feature consistency
and retain fine-grained intra-class features. 2) We
design a contextual adversarial training (CAT) strat-
egy to learn more diverse features from context-
dependent inputs and enhancing the model’s con-
text robustness. 3) We develop a sequence-based
method SACL-LSTM under the framework to learn
label-consistent and context-robust emotional fea-
tures for ERC2. 4) Experiments on three benchmark
datasets show that SACL-LSTM significantly out-
performs other state-of-the-art methods, and prove
the effectiveness of the SACL framework3.

2 Methodology

In this section, we first present the methodology of
SACL framework. Besides, for better adaptation to

2To the best of our knowledge, this is the first attempt to
introduce the idea of adversarial training into the ERC task.

3The source code is available at https://github.com/
zerohd4869/SACL
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Figure 1: Comparison of different training objectives on
a two-class case. CE and CE+SCL mean cross-entropy
and soft supervised contrastive learning, respectively.

context-independent scenarios, we introduce a CAT
strategy to SACL framework. Finally, we apply the
proposed SACL framework for emotion recogni-
tion in conversations and provide a sequence-based
method SACL-LSTM.

2.1 Supervised Adversarial Contrastive
Learning Framework

In the field of representation learning, label-based
contrastive learning (Khosla et al., 2020; Martín
et al., 2022) techniques are used to learn a gener-
alized representation by capturing similarities be-
tween examples within a class and contrasting them
with examples from other classes. However, di-
rectly compressing the feature space of each class is
prone to harming fine-grained intra-class features,
which limits the model’s ability to generalize.

To address this, we design a supervised adver-
sarial contrastive learning (SACL) framework for
learning class-spread structured representations.
The framework applies contrast-aware adversarial
training to generate worst-case samples and uses
a joint class-spread contrastive learning objective
on both original and adversarial samples. It can ef-
fectively utilize label-level feature consistency and
retain fine-grained intra-class features. Figure 1
visualizes the difference between SACL and two
representative optimization objectives (i.e., CE and
soft SCL (Gunel et al., 2021)) on a toy example.

Formally, let us denote I as the set of samples
in a mini-batch. Define ϕ(i) = {e ∈ I\{i} : ŷe =
ŷi} is the set of indices of all positives in the mini-
batch distinct from i, and |ϕ(i)| is its cardinality.
The loss function of soft SCL is a weighted average
of CE loss and SCL loss with a trade-off scalar
parameter λ, i.e.,

Lsoft-SCL = LCE + λLSCL, (1)

https://github.com/zerohd4869/SACL
https://github.com/zerohd4869/SACL
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(a) Contextual Adversarial Training (CAT) (b) Adversarial Training (AT) (c) Vanilla Training (VT)

Figure 2: An LSTM network against different perturbations. CAT, AT and VT represent the hidden layers with
contextual adversarial perturbations rc-adv, adversarial perturbations radv and no perturbations, respectively.

where
LCE = −

∑
i∈I

yi,k log(ŷi,k), (2)

LSCL =
∑
i∈I

−1
|ϕ(i)|

∑
e∈ϕ(i)

log exp(sim(zi,ze)/τ)∑
a∈A(i)

exp(sim(zi,za)/τ)
, (3)

yi,k and ŷi,k denote the value of one-hot vector
yi and probability vector ŷi at class index k, re-
spectively. A(i) = I\{i}. zi refers to the hidden
representation of the network’s output for the i-th
sample. sim(·, ·) is a pairwise similarity function,
i.e., dot product. τ > 0 is a scalar temperature
parameter that controls the separation of classes.

At each step of training, we apply an adversar-
ial training strategy with the soft SCL objective
on original samples to produce anti-contrast worst-
case samples. The training strategy can be im-
plemented using a context-free approach such as
FGM (Miyato et al., 2017) or our context-aware
CAT. These samples can be seen as hard positive ex-
amples, which spread out the representation space
for each class and confuse the robust-less model.
After that, we utilize a new soft SCL on obtained
adversarial samples to maximize the consistency
of class-spread representations with the same la-
bel. Following the above calculation process of
Lsoft-SCL on original samples, the optimization ob-
jective on corresponding adversarial samples can
be easily obtained in a similar way, i.e., Lr-adv

soft-SCL.
The overall loss of SACL is defined as a sum of

two soft SCL losses on both original and adversar-
ial samples, i.e.,

L = Lsoft-SCL + Lr-adv
soft-SCL. (4)

2.2 Contextual Adversarial Training
Adversarial training (AT) (Goodfellow et al., 2015;
Miyato et al., 2017) is a widely used regulariza-
tion method for models to improve robustness to
small, approximately worst-case perturbations. In

context-dependent scenarios, directly generating
adversarial samples interferes with the correlation
between samples, which is detrimental to context
understanding.

To avoid this, we design a contextual adversar-
ial training (CAT) strategy for a context-aware
network, to obtain diverse context features and
a robust model. Different from the standard AT
that put perturbations on context-free layers (e.g.,
word/sentence embeddings), we add adversarial
perturbations to the context-aware network struc-
ture in a multi-channel way. Under a supervised
training objective, it can obtain diverse features
from context and enhance model robustness to con-
textual perturbations.

Let us denote (u, y) as the mini-batch input sam-
pled from distribution D and p(y|u; θ) as a context-
aware model. At each step of training, we iden-
tify the contextual adversarial perturbations rc-adv
against the current model with the parameters θ̂,
and put them on the context-aware hidden layers
of the model. With a linear approximation (Good-
fellow et al., 2015), an Lq norm-ball and a certain
radius ϵ for rc-adv, and a training objective ℓ (e.g.,
soft SCL), the formulation of CAT is illustrated by

min
θ

E(u,y)∼D max
∥rc-adv∥q≤ϵ

ℓ(u+ rc-adv, y; θ),

where rc-adv = −ϵg/∥g∥q, g = ∇u log p(y | u; θ̂).
(5)

Here, we take the LSTM network (Hochreiter
and Schmidhuber, 1997) with a sequence input
[u1, u2, ..., uN ] as an example, and the correspond-
ing representations of the output are [c1, c2, ..., cN ].
Adversarial perturbations are put on context-aware
hidden layers of the LSTM in a multi-channel way,
including three gated layers and a memory cell
layer in the LSTM structure, as shown in Figure 2.

With contextual perturbations on the network,
there is a reasonable interpretation of the formula-
tion in Eq. (5). The inner maximization problem
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Figure 3: The overall architecture of SACL-LSTM. The
mark with/without shade means two different classes.
We take the ×-marked utterance as an example to show
the objective of SACL. Dual-LSTM is a context-aware
module that can capture sequential features in the con-
versation. r means contextual adversarial perturbations
that put on hidden layers of Dual-LSTM.

is finding the context-level worst-case samples for
the network, and the outer minimization problem is
to train a robust network to the worst-case samples.
After introducing CAT, our SACL can further learn
more diverse features and smooth representation
spaces from context-dependent inputs, as well as
enhance the model’s context robustness.

2.3 Application for Emotion Recognition in
Conversations

In this subsection, we apply SACL framework
to the task of emotion recognition in conversa-
tions (ERC), and present a sequence-based method
SACL-LSTM. The overall architecture is illus-
trated in Figure 3. With the guidance of SACL
with CAT, the method can learn label-consistent
and context-robust emotional features for better
emotion recognition.

2.3.1 Problem Statement

The ERC task aims to recognize emotions ex-
pressed by speakers in a conversation. For-
mally, let U = [u1, u2, ..., uN ] be a conversa-
tion with N utterances and M speakers/parties.
Each utterance ui is spoken by the party pϕ(ui) ∈
{p1, p2, ..., pM}, where ϕ maps the utterance in-
dex into the corresponding speaker index. For
each m ∈ [1,M ], Um represents the set of ut-
terances spoken by the party pm, i.e., Um =
{ui|ui ∈ U and ui is spoken by pm, ∀i ∈ [1, N ]}.
The goal is to identify the emotion label yi for each
utterance ui from the pre-defined emotions Y .

2.3.2 Textual Feature Extraction
Following previous works (Ghosal et al., 2020;
Shen et al., 2021b), the pre-trained roberta-large4

(Liu et al., 2019) is fine-tuned on the train sets
for utterance-level emotion classification, and then
its parameters are frozen when training our model.
Formally, given an utterance input ui, the output of
[CLS] token in the last hidden layer of the encoder
is used to obtain the utterance representation ui

with a dimension du. We denote {ui ∈ Rdu}Ni=1 as
the context-free textual features for N utterances.

2.3.3 Model Structure
The network structure of SACL-LSTM consists
of a dual long short-term memory (Dual-LSTM)
module and an emotion classifier.

Dual-LSTM After extracting textual features, we
design a Dual-LSTM module to capture situation-
and speaker-aware contextual features in a conver-
sation. It is a modified version of the contextual
perception module in Hu et al. (2021a).

Specifically, to alleviate the speaker cold-start is-
sue5, we modify the speaker perception module. If
the number of utterances of the speaker is less than
a predefined integer threshold ξ, the common char-
acteristics of these cold-start speakers are directly
represented by a shared general speaker vector o.
The speaker-aware features cspi are computed as:

cspi ,hsp
m,j =

{
o,None if |Um| < ξ,
←−−−→
LSTM sp(ui,h

sp
m,j−1), j ∈ [1, |Um|] otherwise,

(6)

where
←−−−→
LSTM sp indicates a BiLSTM to obtain

speaker embeddings. hsp
m,j is the j-th hidden state

of the party pm with a dimension of dh. m = ϕ(ui).
Um refers to all utterances of pm in a conversation.
The situation-aware features csii are defined as,

csii ,h
si
i =

←−−−→
LSTM

si
(ui,h

si
i−1), (7)

where
←−−−→
LSTM si is a BiLSTM to obtain situation-

aware embeddings and hsi
i is the hidden vector

with a dimension of dh.
We concatenate the situation-aware and speaker-

aware features to form the context representation
of each utterance, i.e., ci = [csii ; c

sp
i ].

4https://huggingface.co/
5In multi-party interactions, some speakers have limited

interaction with others, making it difficult to capture context-
aware speaker characteristics directly with sequence-based
networks, especially with the short speaker sequence.

https://huggingface.co/


Emotion Classifier Finally, according to the con-
text representation, an emotion classifier is applied
to predict the emotion label of each utterance.

ŷi = softmax(Wcci + bc), (8)

where Wc ∈ R4dh×|Y| and bc ∈ R|Y| are trainable
parameters. |Y| is the number of emotion labels.

2.3.4 Optimization Process
Under SACL framework, we apply contrast-aware
CAT to generate worst-case samples and utilize a
joint class-spread contrastive learning objective on
both original and adversarial samples. At each step
of training, we apply the CAT strategy with the
soft SCL objective on original samples to produce
context-level adversarial perturbations. The per-
turbations are put on context-aware hidden layers
of Dual-LSTM in a multi-channel way, and then
obtain adversarial samples. After that, we lever-
age a new soft SCL on these worst-case samples
to maximize the consistency of emotion-spread
representations with the same label. Under the
joint objective on both original and adversarial sam-
ples, SACL-LSTM can learn label-consistent and
context-robust emotional features for ERC.

3 Experimental Setups

3.1 Datasets
We evaluate our model on three benchmark datasets.
IEMOCAP (Busso et al., 2008) contains dyadic
conversation videos between pairs of ten unique
speakers, where the first eight speakers belong to
train sets and the last two belong to test sets. The
utterances are annotated with one of six emotions,
namely happy, sad, neutral, angry, excited, and frus-
trated. MELD (Poria et al., 2019a) contains multi-
party conversation videos collected from Friends
TV series. Each utterance is annotated with one
of seven emotions, i.e., joy, anger, fear, disgust,
sadness, surprise, and neutral. EmoryNLP (Zahiri
and Choi, 2018) is a textual corpus that comprises
multi-party dialogue transcripts of the Friends TV
show. Each utterance is annotated with one of
seven emotions, i.e., sad, mad, scared, powerful,
peaceful, joyful, and neutral.

The statistics are reported in Table 1. In this
paper, we focus on ERC in a textual setting. Other
multimodal knowledge (i.e., acoustic and visual
modalities) is not used. We use the pre-defined
train/val/test splits in MELD and EmoryNLP. Fol-
lowing previous studies (Hazarika et al., 2018b;

Dataset # Dialogues # Utterances # Avg. # Avg.
train val test train val test Turns Parties

IEMOCAP 120 31 5810 1623 49.2 2
MELD 1039 114 280 9989 1109 2610 9.6 2.7
EmoryNLP 659 89 79 7551 954 984 11.5 3.2

Table 1: The statistics of three datasets.

Ghosal et al., 2019), we randomly extract 10% of
the training dialogues in IEMOCAP as validation
sets since there is no predefined train/val split.

3.2 Comparison Methods

The fourteen baselines compared are as follows. 1)
Sequence-based methods: bc-LSTM (Poria et al.,
2017) employs an utterance-level LSTM to capture
contextual features. DialogueRNN (Majumder
et al., 2019) is a recurrent network to track speaker
states and context. COSMIC (Ghosal et al., 2020)
uses GRUs to incorporate commonsense knowl-
edge and capture complex interactions. Dialogue-
CRN (Hu et al., 2021a) is a cognitive-inspired
network with multi-turn reasoning modules that
captures implicit emotional clues in a dialogue.
CauAIN (Zhao et al., 2022) uses causal clues in
commonsense knowledge to enrich the modeling
of speaker dependencies.

2) Graph-based methods: DialogueGCN
(Ghosal et al., 2019) uses GRUs and GCNs with re-
lational edges to capture context and speaker depen-
dency. RGAT (Ishiwatari et al., 2020) applies po-
sition encodings to RGAT to consider speaker and
sequential dependency. DAG-ERC (Shen et al.,
2021b) adopts a directed GNN to model the conver-
sation structure. SGED+DAG (Bao et al., 2022) is
a speaker-guided framework with a one-layer DAG
that can explore complex speaker interactions.

3) Transformer-based methods: KET (Zhong
et al., 2019) incorporates commonsense knowledge
and context into a Transformer. DialogXL (Shen
et al., 2021a) adopts a modified XLNet to deal with
longer context and multi-party structures. TOD-
KAT (Zhu et al., 2021) enhances the ability of
Transformer by incorporating commonsense knowl-
edge and a topic detection task. CoG-BART (Li
et al., 2022a) uses a SupCon loss (Khosla et al.,
2020) and a response generation task to enhance
BART’s ability. SPCL+CL (Song et al., 2022)
applies a prompt-based BERT with supervised pro-
totypical contrastive learning (Wang et al., 2021;
Martín et al., 2022) and curriculum learning (Ben-
gio et al., 2009).



Methods # Param.
IEMOCAP MELD EmoryNLP Avg.

Acc w-F1 Acc w-F1 Acc w-F1 Acc w-F1
Transformer-based Methods
KET†‡ (Zhong et al., 2019) - - 59.56 - 58.18 - 34.39 - 50.17
DialogXL‡ (Shen et al., 2021a) - - 65.94 - 62.41 - 34.73 - 54.36
TODKAT†‡ (Zhu et al., 2021) - 61.11 61.33 67.24 65.47 42.38 38.69 56.91 55.16
CoG-BART (Li et al., 2022a) 415.1M 65.02 64.87 64.95 63.82 40.94 37.33 56.97 55.34
SPCL+CL (Song et al., 2022) 356.7M 66.71 66.93 64.36 64.93 40.32 39.45 57.13 57.10
Graph-based Methods
DialogueGCN (Ghosal et al., 2019) 2.1M 62.49 62.11 63.62 62.68 36.87 34.63 54.33 53.14
RGAT‡ (Ishiwatari et al., 2020) - - 65.22 - 60.91 - 34.42 - 53.52
DAG-ERC (Shen et al., 2021b) 9.5M 66.54 66.53 63.75 63.36 39.64 38.29 56.64 56.06
SGED+DAG (Bao et al., 2022) 3.0M 66.29 66.27 63.60 63.16 39.19 38.11 56.36 55.85
Sequence-based Methods
bc-LSTM (Poria et al., 2017) 1.2M 63.08 62.84 65.87 64.87 40.85 36.84 56.60 54.85
DialogueRNN (Majumder et al., 2019) 9.9M 64.85 64.65 65.96 65.30 43.66 37.54 58.16 55.83
COSMIC† (Ghosal et al., 2020) 11.9M 63.43 63.43 65.96 65.03 41.79 38.49 57.06 55.65
DialogueCRN (Hu et al., 2021a) 3.3M 67.39 67.53 66.93 65.77 41.04 38.79 58.45 57.36
CauAIN† (Zhao et al., 2022) 6.1M 65.08 65.01 65.85 64.89 43.13 37.87 58.02 55.92
SACL-LSTM (ours) 2.6M 69.08∗ 69.22∗ 67.51∗ 66.45∗ 42.21 39.65∗ 59.60∗ 58.44∗

Table 2: Overall results (%) against various methods for ERC. We present accuracy (Acc) and weighted-F1 (w-F1)
score for each dataset. † means the external knowledge is used. # Param. means the average number of learnable
model parameters. ‡ means the results are from the original paper or their official repository; results of CoG-BART
and SPCL+CL are reproduced under model initialization with bart-large4 and roberta-large4, respectively; all other
results are reproduced using roberta-large features that our SACL-LSTM uses. For each reproduced method, we
run five random seeds and report the average result on test sets. Best results are highlighted in bold. * represents
statistical significance over state-of-the-art scores under the paired t-test (p<0.05).

3.3 Evaluation Metrics

Following previous works (Hu et al., 2021a; Li
et al., 2022a), we report the accuracy and weighted-
F1 score to measure the overall performance. Also,
the F1 score per class and macro-F1 score are re-
ported to evaluate the fine-grained performance.
For the structured representation evaluation, we
choose three supervised clustering metrics (i.e.,
ARI, NMI, and FMI) and three unsupervised clus-
tering metrics (i.e., SC, CHI, and DBI) to measure
the clustering performance of learned representa-
tions. For the empirical robust evaluation (Carlini
and Wagner, 2017), we use the robust weighted-F1
score on adversarial samples generated from origi-
nal test sets. Besides, the paired t-test (Kim, 2015)
is used to verify the statistical significance of the
differences between the two approaches.

3.4 Implementation Details

All experiments are conducted on a single NVIDIA
Tesla V100 32GB card. The validation sets are used
to tune hyperparameters and choose the optimal
model. For each method, we run five random seeds
and report the average result of the test sets. The
network parameters of our model are optimized
by using Adam optimizer (Kingma and Ba, 2015).
More experimental details are listed in Appendix B.

(a) IEMOCAP
Methods Hap. Sad. Neu. Ang. Exc. Fru. Avg.

DialogueCRN 54.28 81.34 69.57 62.09 67.33 64.22 66.47
SACL-LSTM 56.91∗ 84.78∗ 70.00∗ 64.09∗ 69.70∗ 65.02∗ 68.42∗
Improve +2.63 +3.44 +0.43 +2.00 +2.37 +0.80 +1.95

(b) MELD
Methods Neu. Sur. Fea. Sad. Joy. Dis. Ang. Avg.

DialogueCRN 79.72 57.62 18.26 39.30 64.56 32.07 52.53 49.15
SACL-LSTM 80.17∗ 58.77∗ 26.23∗ 41.34∗ 64.98∗ 31.47 52.35 50.76∗
Improve +0.45 +1.15 +7.97 +2.04 +0.42 -0.60 -0.18 +1.61

(c) EmoryNLP
Methods Joy. Mad. Pea. Neu. Sad. Pow. Sca. Avg.

DialogueCRN 54.42 36.44 10.18 53.83 25.74 4.55 37.49 31.81
SACL-LSTM 54.78∗ 37.68∗ 11.66∗ 55.42∗ 25.83 5.43∗ 37.11 32.56∗
Improve +0.36 +1.24 +1.48 +1.59 +0.09 +0.88 -0.38 +0.75

Table 3: Fine-grained results (%) of SACL-LSTM and
DialogueCRN for all emotion categories. DialogueCRN
is the sub-optimal method in Table 2. We report F1 score
per class and macro-F1 score.

4 Results and Analysis

4.1 Overall Results

The overall results6 are reported in Table 2. SACL-
LSTM consistently obtains the best weighted-F1
score over comparison methods on three datasets.
Specifically, SACL-LSTM obtains +1.1% absolute

6We noticed that DialogueRNN and CauAIN present a
poor weighted-F1 but a fine accuracy score on EmoryNLP,
which is most likely due to the highly class imbalance issue.



Methods IEMOCAP MELD EmoryNLP
SACL-LSTM 69.22±0.54 66.45±0.35 39.65±0.66

- w/o SACL 68.17±0.63 65.64±0.14 38.65±0.62

- w/o SACL - w/o Dual-LSTM 52.99±0.49 64.65±0.12 37.74±0.20

Table 4: Ablation results (%) of SACL-LSTM. “- w/o
SACL” means replacing the SACL with a cross-entropy
term. “- w/o Dual-LSTM” means replacing the Dual-
LSTM with an MLP. We report the average score and
standard deviation of the weighted-F1 with five seeds.

improvements over other state-of-the-art methods
in terms of the average weighted-F1 score on three
datasets. Besides, SACL-LSTM obtains +1.2%
absolute improvements in terms of the average ac-
curacy score. The results indicates the good gener-
alization ability of our method to unseen test sets.

We also report fine-grained results on three
datasets in Table 3. SACL-LSTM achieves better
results for most emotion categories (17 out of 20
classes), except three classes (i.e., disgust and anger
in MELD, and scared in EmoryNLP). It is worth
noting that SACL-LSTM obtains +2.0%, +1.6%
and +0.8% absolute improvements in terms of the
macro-F1 (average score of F1 for all classes) on
IEMOCAP, MELD and EmoryNLP, respectively.

4.2 Ablation Study
We conduct ablation studies to evaluate key com-
ponents in SACL-LSTM. The results are shown
in Table 4. When removing the proposed SACL
framework (i.e., - w/o SACL) and replacing it with
a simple cross-entropy objective, we obtain inferior
performance in terms of all metrics. When further
removing the context-aware Dual-LSTM module
(i.e., - w/o SACL - w/o Dual-LSTM) and replacing
it with a context-free MLP (i.e., a fully-connected
neural network with a single hidden layer), the
results decline significantly on three datasets. It
shows the effectiveness of both components.

4.3 Comparison with Different Optimization
Objectives

To demonstrate the superiority of SACL, we in-
clude control experiments that replace it with the
following optimization objectives, i.e., CE+SCL
(soft SCL) (Gunel et al., 2021), CE+SupCon7

(Khosla et al., 2020), and cross-entropy (CE).
Table 5 shows results against various opti-

mization objectives. SACL significantly outper-
forms the comparison objectives on three datasets.

7The idea of SupCon is very similar to SCL. Their imple-
mentations are slightly different. Combined with CE, they
achieved very close performance, as shown in Table 5.

Optimization
Objectives

IEMOCAP MELD EmoryNLP

SACL 69.22±0.54 66.45±0.35 39.65±0.66

CE+SCL 68.32±0.45 65.95±0.20 38.93±0.89

CE+SupCon 68.37±0.36 65.89±0.38 39.00±0.93

CE 68.17±0.63 65.64±0.14 38.65±0.62

Table 5: Comparison results (%) against different opti-
mization objectives. We report the weighted-F1 score.

Training
Strategies

IEMOCAP MELD EmoryNLP

SACL
- w/ CAT 69.22±0.54 66.45±0.35 39.65±0.66

- w/ CRT 68.28±0.72 65.70±0.29 39.16±0.59

- w/ AT 68.95±1.03 65.69±0.34 38.58±0.39

- w/ VT 68.32±0.45 65.95±0.20 38.93±0.89

Table 6: Comparison results (%) against different train-
ing strategies under the SACL framework. CAT, CRT,
AT, and VT are contextual adversarial training, contex-
tual random training, adversarial training, and vanilla
training, respectively. We report the weighted-F1 score.

CE+SCL and CE+SupCon objectives apply label-
based contrastive learning to extract a generalized
representation, leading to better performance than
CE. However, they compress the feature space
of each class and harm fine-grained intra-class
features, yielding inferior results than our SACL.
SACL uses a joint class-spread contrastive learning
objective on both original and adversarial samples.
It can effectively utilize label-level feature consis-
tency and retain fine-grained intra-class features.

4.4 Comparison with Different Training
Strategies

To evaluate the effectiveness of contextual adver-
sarial training (CAT), we compare with different
training strategies, i.e., adversarial training (AT)
(Miyato et al., 2017), contextual random training
(CRT), and vanilla training (VT). CRT is the strat-
egy in which we replace rc-adv in CAT with random
perturbations from a multivariate Gaussian with the
scaled norm on context-aware hidden layers.

The results are reported in Table 6. Compared
with other strategies, our CAT obtains better per-
formance consistently on three datasets. It shows
that CAT can enhance the diversity of emotional
features by adding adversarial perturbations to the
context-aware structure with a min-max training
recipe. We notice that AT strategy achieves the
worst performance on MELD and EmoryNLP with
the extremely short length of conversations. It indi-
cates that AT is difficult to improve the diversity of
context-dependent features with a limited context.



Optimization
Objectives

Supervised Metrics Unsupervised Metrics
ARI↑ NMI↑ FMI↑ SC↑ CHI↑ DBI↓
(%) (%) (%)

IE
M

O
C

A
P CE 40.61 47.39 51.56 0.36 1231.19 1.06

CE+SCL 40.55 47.25 51.53 0.36 1188.46 1.07
SACL 41.95 48.26 52.62 0.39 1696.05 0.99
Improve +1.34 +0.87 +1.06 +0.03 +464.86 +0.07

M
E

L
D

CE 40.74 27.00 59.41 0.24 755.83 1.41
CE+SCL 40.92 27.13 59.52 0.23 738.70 1.42
SACL 42.34 28.22 60.42 0.31 1342.38 1.16
Improve +1.42 +1.09 +0.90 +0.07 +586.55 +0.25

Table 7: Clustering results against different optimization
objectives. Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI), and Fowlkes-Mallows Index
(FMI) evaluate the accuracy of clustering. Silhouette
Coefficient (SC), Calinski-Harabasz Index (CHI), and
Davies-Bouldin Index (DBI) evaluate the separation
and compactness of clustering. SC, CHI, and DBI are
evaluated based on K-Means, and we define the number
of clusters K as the true number of categories, i.e.,
K = 6 for IEMOCAP, and K = 7 for MELD.

4.5 Structured Representation Evaluation
To evaluate the quality of structured representa-
tions, we measure the clustering performance based
on the representations learned with different opti-
mization objectives on the test set of IEMOCAP
and MELD. Table 7 reports the clustering results of
the Dual-LSTM network under three optimization
objectives, including CE, CE+SCL, and our SACL.

According to supervised clustering metrics, the
proposed SACL outperforms other optimization
objectives by +1.3% and +1.4% in ARI, +0.9%
and +1.1% in NMI, +1.1% and +0.9% in FMI
for IEMOCAP and MELD, respectively. The more
accurate clustering results show that our SACL can
distinguish different data categories and assign sim-
ilar data points to the same categories. It indicates
that SACL can discover the intrinsic structure of
data relevant to labels and extract generalized rep-
resentations for emotion recognition.

According to unsupervised clustering metrics,
SACL achieves better results than other optimiza-
tion objectives by +0.03 and +0.07 in SC, +464.86
and +586.55 in CHI, and +0.07 and +0.25 in DBI
for IEMOCAP and MELD, respectively. Better
performance on these metrics suggests that SACL
can learn more clear, separated, and compact clus-
ters. This indicates that SACL can better capture
the underlying structure of the data, which can be
beneficial for subsequent emotion recognition.

Overall, the results demonstrate the effectiveness
of the SACL framework in learning structured rep-
resentations for improving clustering performance
and quality, as evidenced by the significant im-

Figure 4: Context robustness performances against dif-
ferent optimization objectives. We report the robust
weighted-F1 scores under different attack strengths. De-
tailed results are listed in Appendix C.1.

provements in various clustering metrics.

4.6 Context Robustness Evaluation

We further validate context robustness against dif-
ferent optimization objectives. We adjust different
attack strengths of CE-based contextual adversarial
perturbations on the test set and report the robust
weighted-F1 scores. The context robustness results
of SACL, CE with AT, and CE objectives on IEMO-
CAP and MELD are shown in Figure 4. CE with
AT means using a cross-entropy objective with tra-
ditional adversarial training, i.e., FGM.

Our SACL consistently gains better robust
weighted-F1 scores over other optimization ob-
jectives on both datasets. Under different attack
strengths (ϵ > 0), SACL-LSTM achieves up to
2.2% (average 1.3%) and 17.2% (average 13.4%)
absolute improvements on IEMOCAP and MELD,
respectively. CE with AT obtains sub-optimal per-
formance since generating context-free adversarial
samples interferes with the correlation between ut-
terances, which is detrimental to context under-
standing. Our SACL using CAT can generate
context-level worst-case samples for better training
and enhance the model’s context robustness.

Moreover, we observe that SACL achieves a
significant improvement on MELD with limited
context. The average number of dialogue turns in
MELD is relatively small, making it more likely
for any two utterances to be strongly correlated.
By introducing CAT, SACL learns more diverse
features from the limited context, obtaining better
context robustness results on MELD than others.



Figure 5: t-SNE visualization of representations learned
with different optimization objectives on MELD. The
data points reflect an overall distribution representation.
Points corresponding to categories with a sample pro-
portion of less than 10% are excluded for a clear picture.

4.7 Representation Visualization

We qualitatively visualize the learned representa-
tions on the test set of MELD with t-SNE (Van der
Maaten and Hinton, 2008). Figure 5 shows the
visualization of the three speakers. Compared with
using CE objective, the distribution of each emo-
tion class learned by our SACL is more tight and
united. It indicates that SACL can learn cluster-
level structured representations and have a better
ability to generalization. Besides, under SACL, the
representations of surprise are away from neutral,
and close to both joy and anger, which is consistent
with the nature of surprise8. It reveals that SACL
can partly learn inter-class intrinsic structure in
addition to intra-class feature consistency.

4.8 Error Analysis

Figure 6 shows an error analysis of SACL-LSTM
and its ablated variant on the test set of IEMOCAP
and MELD. The normalized confusion matrices
are used to evaluate the quality of each model’s pre-
dicted outputs. From the diagonal elements of the
matrices, SACL-LSTM reports better true positives
against others on most fine-grained emotion cate-

8Surprise is a non-neutral complex emotion that can be ex-
pressed with positive or negative valence (Poria et al., 2019a).

Figure 6: The normalized confusion matrices for SACL-
LSTM and its variant. The rows represent the ac-
tual classes, whereas the columns represent predictions
made by the model. Each cell (i, j) represents the per-
centage of class i predicted to be class j.

gories. It suggests that SACL-LSTM is unbiased
towards the under-represented emotion labels and
learns better fine-grained features. Compared with
the ablated variant w/o SACL, SACL-LSTM ob-
tains better performances at similar categories, e.g.,
excited to happy, angry to frustrated, and frustrated
to angry on IEMOCAP. It indicates that the SACL
framework can effectively mitigate the misclassi-
fication problem of similar emotions. The poor
effect of happy to excited may be due to the small
proportion of happy samples used for training. For
MELD, some categories (i.e., fear, sadness, and
disgust) that account for a small proportion are eas-
ily misclassified as neutral accounting for nearly
half, which is caused by the class imbalance issue.

5 Conclusion

We propose a supervised adversarial contrastive
learning framework to learn class-spread struc-
tured representations for classification. It applies
a contrast-aware adversarial training strategy and
a joint class-spread contrastive learning objective.
Besides, we design a contextual adversarial train-
ing strategy to learn more diverse features from
context-dependent inputs and enhance the model’s
context robustness. Under the SACL framework
with CAT, we develop a sequence-based method
SACL-LSTM to learn label-consistent and context-
robust features on context-dependent data for better
emotion recognition. Experiments verified the ef-
fectiveness of SACL-LSTM for ERC and SACL
for learning generalized and robust representations.



Limitations

In this paper, we present a supervised adversarial
contrastive learning (SACL) framework with con-
textual adversarial training to learn class-spread
structured representations for context-dependent
emotion classification. However, the framework
is somewhat limited by the class imbalance issue,
as illustrated in Section 4. To more comprehen-
sively evaluate the generalization of SACL, it is
necessary to test its transferability in low-resource
and out-of-distribution scenarios, and evaluate its
performance across a wider range of tasks. Addi-
tionally, it would be beneficial to explore the the-
oretical underpinnings and potential applications
of the framework in greater depth. The aforemen-
tioned limitations will be left for future research.
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Appendix Overview

In this supplementary material, we provide: (i) the
related work, (ii) a detailed description of experi-
mental setups, and (iii) detailed results.

A Related Work

A.1 Emotion Recognition in Conversations

Unlike traditional sentiment analysis (Zhou et al.,
2019; Wei et al., 2020; Hu et al., 2022c; Li et al.,
2022b), context information plays a significant role
in identifying the emotion in conversations (Poria
et al., 2019b). Existing works usually utilize deep
learning techniques to identify the emotion by con-
text modeling and emotion representation learning.
These works can be roughly divided into sequence-,
graph- and Transformer-based methods.

A.1.1 Sequence-based Methods
Sequence-based methods (Poria et al., 2017; Haz-
arika et al., 2018b,a; Majumder et al., 2019; Ghosal
et al., 2020; Jiao et al., 2020a,b; Hu et al., 2021a;
Zhao et al., 2022) generally utilize sequential in-
formation in a dialogue to capture different levels
of contextual features, i.e., situation, speakers and
emotions. For example, Poria et al. (2017) employ
an LSTM to capture context-level features from sur-
rounding utterances. Hazarika et al. (2018b,a); Jiao
et al. (2020b) use memory networks to capture con-
textual features. Majumder et al. (2019) use GRUs
to capture speaker, context and emotion features.
Jiao et al. (2020a) introduce a conversation comple-
tion task based on unsupervised data to benefit the
ERC task. Ghosal et al. (2020); Zhao et al. (2022)
utilize GRUs to fuse commonsense knowledge and
capture complex interactions in the dialogue. Hu
et al. (2021a) propose a cognitive-inspired network
that uses multi-turn reasoning modules to capture
implicit emotional clues in conversations. In this
paper, we propose a supervised adversarial con-
trastive learning framework with contextual adver-
sarial training to learn class-spread structured rep-
resentations for better emotion recognition.

A.1.2 Graph-based Methods
Graph-based methods (Ghosal et al., 2019; Zhang
et al., 2019b; Ishiwatari et al., 2020; Shen et al.,
2021b; Hu et al., 2021b, 2022b; Bao et al., 2022)
usually design a specific graph structure to capture
complex dependencies in the conversation. For ex-
ample, Ghosal et al. (2019); Zhang et al. (2019b);

Shen et al. (2021b) leverage GNNs to capture com-
plex interactions in a conversation. In order to
simultaneously consider speaker interactions and
sequence information, Ishiwatari et al. (2020) intro-
duce a positional encoding module into RGAT. Hu
et al. (2021b, 2022b) respectively design a graph-
based fusion method that can simultaneously fuse
multimodal knowledge and contextual features.

A.1.3 Transformer-based Methods
Transformer-based methods (Zhong et al., 2019;
Wang et al., 2020; Shen et al., 2021a; Zhu et al.,
2021; Li et al., 2021a; Lee and Choi, 2021; Lee
and Lee, 2022; Li et al., 2022a; Song et al., 2022)
usually exploit general knowledge in pre-trained
language models (Devlin et al., 2019; Liu et al.,
2019; Hu et al., 2022a), and model the conversation
by a Transformer-based architecture. For exam-
ple, Zhong et al. (2019) design a Transformer with
graph attention to incorporate commonsense knowl-
edge and contextual features. Wang et al. (2020)
use a Transformer with an LSTM-CRF module
to learn emotion consistency. Shen et al. (2021a)
adopt a modified XLNet to deal with longer context
and multi-party structures. Lee and Choi (2021)
leverage LSTM and GCN to enhance BERT’s abil-
ity of context modeling. Yang et al. (2022) apply
curriculum learning to deal with the learning prob-
lem of difficult samples. Li et al. (2022a) utilize a
supervised contrastive term and a response genera-
tion task to enhance BART’s ability for ERC.

A.2 Contrastive Learning and Adversarial
Training

A.2.1 Contrastive Learning
Contrastive learning is a representation learning
technique to learn generalized embeddings such
that similar data sample pairs are close while dis-
similar sample pairs stay far apart (Chopra et al.,
2005). Sohn (2016); van den Oord et al. (2018);
Bachman et al. (2019); Tian et al. (2020); Hénaff
(2020); Chen et al. (2020) utilize self-supervised
contrastive learning to learn powerful representa-
tions. But these self-supervised techniques are gen-
erally limited by the risk of sampling bias and non-
trivial data augmentation. Li et al. (2021b) propose
prototypical contrastive learning to encode the se-
mantic structure of data into the embedding space.
Kim et al. (2020); Jiang et al. (2020b); Fan et al.
(2021) add instance-wise adversarial examples dur-
ing self-supervised contrastive learning to improve
model robustness. Recently, Khosla et al. (2020);



Optimization
Objectives

Attack Strength ϵ (IEMOCAP) Attack Strength ϵ (MELD)
0 0.125 0.25 0.5 1 2 4 Avg. (ϵ > 0) 0 1 2 4 8 16 32 Avg. (ϵ > 0)

CE 68.17 63.50 60.23 55.20 46.01 35.49 27.83 48.04 65.64 54.78 47.59 37.66 28.71 22.29 18.54 34.93
CE with AT 68.55 63.10 59.98 55.00 48.76 39.95 32.31 49.85 65.69 54.29 48.00 40.59 33.68 28.80 26.09 38.58
SACL 69.22 64.59 61.76 57.41 49.81 40.77 32.80 51.19 66.45 62.03 59.96 56.35 50.88 44.69 37.69 51.93
Improve +0.67 +1.09 +1.53 +2.21 +1.05 +0.82 +0.49 +1.34 +0.76 +7.25 +11.96 +15.76 +17.20 +15.89 +11.60 +13.35

Table 8: Context robustness results against different optimization objectives on IEMOCAP and MELD. We report
the robust weighted-F1 scores under different attack strengths.

Figure 7: Classification performances of SACL-LSTM against different temperature coefficients on three datasets.

Gunel et al. (2021) use supervised contrastive learn-
ing to avoid the above risks and boost performance
on downstream tasks by introducing label-level
supervised signals. Wang et al. (2021); Martín
et al. (2022) use supervised contrastive learning
over prototype-label embeddings to learn represen-
tations for classification. Lin et al. (2022) employ
supervised contrastive learning and CE-based ad-
versarial training to learn domain-adaptive features
for low-resource rumor detection. In this paper, we
propose a supervised adversarial contrastive learn-
ing framework with contextual adversarial training
to learn class-spread structured representations for
classification on context-dependent data.

A.2.2 Adversarial Training
Adversarial training is a widely used regulariza-
tion method to improve model robustness by gen-
erating adversarial examples with a min-max train-
ing recipe (Szegedy et al., 2014). For example,
Szegedy et al. (2014) train neural networks on a
mixture of adversarial examples and clean exam-
ples. Goodfellow et al. (2015) further propose a
fast gradient sign method to produce adversarial ex-
amples during training. Miyato et al. (2017) extend
adversarial and virtual adversarial training to the
text domain by applying perturbations to the word
embeddings. After that, there are many variants es-
tablished for supervised/semi-supervised learning
(Shafahi et al., 2019; Zhang et al., 2019a; Qin et al.,
2019; Jiang et al., 2020a; Zhu et al., 2020).

B Experimental Setups

We report the detailed hyperparameter settings of
SACL-LSTM on three datasets in Table 9. The

Hyperparameter IEMOCAP MELD EmoryNLP
Embedding size du 1024 1024 1024
Hidden size dh 128 128 128
Number of LSTM layers 2 1 1
Threshold ξ of Dual-LSTM 2 2 2
Perturbation radius ϵ of CAT 5 5 0.5
Perturbation rate of CAT 1 1 0.1
Norm constraint Lq of CAT L2 L2 L2

Trade-off weight λ of SACL 0.05 0.1 0.5
Trade-off weight λr-adv of SACL 0.5 0.05 0.1
Temperature τ and τ r-adv of SACL 0.1 0.1 0.1
Number of epochs 100 100 100
Patience 20 20 20
Mini-batch size 2 16 16
Gradient accumulation steps 16 2 2
Learning rate 1e−4 1e−4 5e−5

Weight decay 2e−4 2e−4 2e−4

Dropout 0.2 0.2 0.2
Maximum token length 200 200 200
Flag of class weight True False True
Factor of sample weight - 1 1

Table 9: Hyperparameter settings of SACL-LSTM on
three datasets.

class weights in the CE loss are applied to alleviate
the class imbalance issue and are set by their rela-
tive ratios in the train and validation sets, except for
MELD, which presents a poor effect. For MELD
and EmoryNLP, we use focal loss (Lin et al., 2017),
a modified version of the CE loss, to balance the
weights of easy and hard samples during training.

C Experimental Results

C.1 Results of Context Robustness Evaluation
The detailed results of context robustness evalua-
tion on IEMOCAP and MELD are listed in Table 8.

C.2 Parameter Analysis
Figure 7 illustrates the effect of the temperature
parameter in SACL framework on the ERC task.


